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Abstract. Naive Bayes Nearest Neighbor (NBNN) is a feature-based image clas-
sifier that achieves impressive degree of accuracy [1] by exploiting ‘Image-to-
Class’ distances and by avoiding quantization of local image descriptors. It is
based on the hypothesis that each local descriptor is drawn from a class-dependent
probability measure. The density of the latter is estimated by the non-parametric
kernel estimator, which is further simplified under the assumption that the nor-
malization factor is class-independent. While leading to significant simplification,
the assumption underlying the original NBNN is too restrictive and considerably
degrades its generalization ability. The goal of this paper is to address this issue.
As we relax the incriminated assumption we are faced with a parameter selection
problem that we solve by hinge-loss minimization. We also show that our mod-
ified formulation naturally generalizes to optimal combinations of feature types.
Experiments conducted on several datasets show that the gain over the original
NBNN may attain up to 20 percentage points. We also take advantage of the
linearity of optimal NBNN to perform classification by detection through effi-
cient sub-window search [2], with yet another performance gain. As a result, our
classifier outperforms — in terms of misclassification error — methods based on
support vector machine and bags of quantized features on some datasets.

1 Introduction

With the advent in recent years of powerful blob and corner detectors and descriptors,
the orderless bag of quantized features — also called bag of words (BoW) — has been
the preferred image representation for image classification. The BoW owes its popular-
ity to its relative simplicity and its ability to produce a compact, finite-dimensional rep-
resentation that can be used as input of a state-of-the-art classifier such as support vector
machine (SVM) or Adaboost. One can cite several highly competitive approaches that
are essentially based on the BoW/SVM combination [3,4,5,6]. In this paper, we pro-
pose an alternative to mainstream methods based on parameter-optimized version of
the NBNN.

In BoW representations, the quantization step results in a substantial loss of dis-
criminative power of the visual features [6,1]. This loss was quantitatively measured in
[1] and it is argued that the popularity enjoyed by the BoW/SVM combination is due
to the efficiency of the SVM classifier, not to the representation itself. In simple words,
most, but not all, of the information discarded by the feature quantization step is offset
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by the efficiency of the classifier. Naive Bayes Nearest Neighbor (NBNN) is a classifier
introduced in [1] that was designed to address this issue: NBNN is non-parametric, does
not require any feature quantization step and thus uses to advantage the full discrimi-
native power of visual features. However, in practice, we observe that NBNN performs
relatively well on certain datasets, but not on others. To remedy this, we start by analyz-
ing the theoretical foundations of the NBNN. We show that this performance variability
could stem from the assumption that the normalization factor involved in the kernel esti-
mator of the conditional density of features is class-independent. We relax this assump-
tion and provide a new formulation of the NBNN which is richer than the original one.
In particular, our approach is well suited for optimal, multi-channel image classification
and object detection. The main argument of NBNN is that the log-likelihood of a visual

Fig. 1. Subwindow detection for the original NBNN (red) and for our version of NBNN (green).
Since the background class is more densely sampled than the object class, the original NBNN
tends to select an object window that is too small relatively to the object instance. As show these
examples, our approach addresses this issue.

feature can be approximated by the distance to its nearest neighbor. In our formulation,
this log-likelihood is approximately equal to an affine function of the nearest neighbor
distance. The latter involves two affine coefficients that, in general, depend on proper-
ties of the training feature set. Our first contribution consists in a method to optimize
these parameters by solving a linear problem that minimizes the cross-validated hinge
loss. In addition, this new formulation generalizes well to optimal combinations of fea-
tures of different types, here referred to as channels. The distance correction parameters
also serve to balance each feature channel according to its relative relevance, as not all
feature channels are equally useful to the problem at hand. As our last contribution, we
show how to reformulate our classifier to perform object detection and classification by
detection. In classification by detection (cf. [7] and the references therein), the aim is
to classify images that contain an object embedded in a strongly cluttered background.
Our solution consists in finding the image subwindow that maximizes a function that
is linear in the image features. Due to this linearity, the optimal object location can be
found by branch and bound subwindow search [2].

We conducted some experiments that reveal that affine distance correction improves
NBNN performance by up to 20 percentage points. This indicates that our modified



Towards Optimal Naive Bayes Nearest Neighbor 3

formulation is not merely a theoretical improvement, but is also of practical interest.
Moreover, this gain is obtained with little computational overhead, compared to the
original NBNN formulation. Interesting results are also given concerning the relative
efficiency of radiometry invariant SIFT features [8]: Opponent SIFT is the descriptor
that performed worst in NBNN, but it becomes the most efficient descriptor in our
formulation.

The idea of designing optimal combinations of different feature channels by cross-
validation has been studied by several authors. In the present context, the most relevant
reference is [9]. While the method in [9] was conceived with the idea of having just one
descriptor per image (either a global texture descriptor or a bag of words), our method
works best when the number of descriptors per image is large. In [4,10], an image is
subdivided into a pyramid of regions at different scales, and each region represents
a channel. This fundamentally differs from our work in that they use bags of words to
represent each image subregion. The idea of considering each image region as a channel
can be applied in our context without any modification. With respect to the sub-window
search, the idea is that in a cluttered background, classification performs best when first
locating the most likely object position. This is close to the concept of region of interest
developed in [11]. The detection scheme we use is inspired by [2,12].

The remainder of this paper is organized as follows. Original NBNN as well as the
modification we propose are summarized in Section 2. In section 3, the adaptation of
the optimal NBNN formulation to the problem of object detection is presented. Exper-
imental results on three real datasets are reported in section 4.

2 Parametric NBNN classification

2.1 Initial formulation of NBNN

In this section, we briefly recall the main arguments of NBNN described by Boiman et
al. [1] and introduce some necessary notation.

In an image I with hidden class label cI , we extract KI features (dIk)k ∈ RD.
Under the naive Bayes assumption, and assuming all image labels are equally probable
(P (c) ∼ cte) the optimal prediction ĉI of the class label of image I maximizes the
product of the feature probabilities relatively to the class label:

ĉI = arg max
c

KI∏
k=1

P (dIk|c). (1)

The feature probability conditioned on the image class P (dIk|c) can be estimated by
a non-parametric kernel estimator, also called Parzen-Rosenblatt estimator. If we note
χc =

{
dJk |cJ = c, 1 ≤ k ≤ KJ

}
the set of all features from all training images that

belong to class c, we can write:

P (dIk|c) =
1
Z

∑
d∈χc

exp
(
− ‖ dIk − d ‖2

2σ2

)
, (2)
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where σ is the bandwidth of the density estimator. In [1], this estimator is further ap-
proximated by the largest term from the sum on the RHS. This leads to a quite simple
expression:

∀d, ∀c, − log (P (d|c)) ' min
d′∈χc

‖ d− d′ ‖2 . (3)

The decision rule for image I is thus:

ĉI = arg max
c
P (I|c) = arg min

c

∑
k

min
d∈χc

‖ dIk − d ‖2 . (4)

This classifier is shown to outperform the usual nearest neighbor classifier. Moreover,
it does not require any feature quantization step, and the descriptive power of image
features is thus preserved.

The reasoning above proceeds in three distinct steps: the naive Bayes assumption
considers that image features are independent identically distributed given the image
class cI (equation 1). Then, the estimation of a feature probability density is obtained
by a non-parametric density estimation process like the Parzen-Rosenblatt estimator
(equation 2). NBNN is based on the assumption that the logarithm of this value, which
is a sum of distances, can be approximated by its largest term (equation 3). In the follow-
ing section, we will show that the implicit simplification that consists in removing the
normalization parameter from the density estimator is invalid in most practical cases.

Along with the notation introduced in this section, we will also need the notion of
point-to-set distance, which is simply the squared Euclidean distance of a point to its
nearest neighbor in the set: ∀Ω ⊂ RD, ∀x ∈ RD, τ(x,Ω) = infy∈Ω ‖ x − y ‖2. In
what follows, τ(x, χc) will be abbreviated as τ c(x).

2.2 Affine correction of nearest neighbor distance for NBNN

The most important theoretical limitation of NBNN is that in order to obtain a simple
approximation of the log-likelihood, the normalization factor 1/Z of the kernel estima-
tor is assumed to be the same for all classes. Yet, there is no a priori reason to believe
that this assumption is satisfied in practice. If this factor significantly varies from one
class to another, then the approximation of the maximum a posteriori class label ĉI by
equation 4 becomes unreliable.

It should be noted that the objection that we raise does not concern the core hy-
pothesis of NBNN, namely the naive Bayes hypothesis and the approximation of the
sum of exponentials of equation 2 by its largest term. In fact, in the following we will
essentially follow and extend the arguments presented in [1] using the same starting
hypothesis.

Non-parametric kernel density estimation requires the definition of a smoothing pa-
rameter σ, also called bandwidth. We consider the general case of a sample of K points
{xk|1 ≤ k ≤ K} drawn from a probability measure defined on some D-dimensional
feature space Ω. The density of this probability measure can be estimated by:

∀x ∈ Ω, f(x) =
1
Z

K∑
k=1

exp
(
−||x− xk||

2

2σ2

)
. (5)
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The value of Z is obtained by normalization of the density function:
∫
Ω
f(x)dx = 1 ⇔

Z = K(2π)
D
2 σD. We retain the NBNN assumption that the likelihood of a feature is

approximately equal to the value of the largest term from the sum on the right hand side
of equation 5. Here we provide an argument that supports this assumption: it is known
that the convergence speed of the Parzen-Rosenblatt (PR) estimator isK−4/(4+D) [13].
This means that in the case of a 128-dimensional feature space, such as the SIFT feature
space, in order to reach an approximation bounded by 1/2 we need to sample 233 points.
In practice, the PR estimator does not converge and there is little sense in keeping more
than just the first term of the sum.

Thus, the log-likelihood of a visual feature d relatively to an image label c is:

− log
(
P (d|c)

)
= − log

{
1
Zc

exp
(
− τ c(d)

2(σc)2

)}
=

τ c(d)
2(σc)2

+ log(Zc), (6)

where Zc = |χc|(2π)
D
2 (σc)D. Recall that τ c(d) is the squared Euclidean distance of

d to its nearest neighbor in χc. In the above equations, we have replaced the class-
independent notation σ, Z by σc, Zc since, in general, there is no reason to believe that
parameters should be equal across classes. For instance, both parameters are functions
of the number of training features of class c in the training set.

Returning to the naive Bayes formulation, we obtain:

∀c,− log (P (I|c)) =
KI∑
k=1

(
τ c(dIk)
2(σc)2

+ log(Zc)
)

= αc
KI∑
k=1

τ c(dIk) +KIβ
c, (7)

where αc = 1/(2(σc)2) and βc = log(Zc) is a re-parametrization of the log-likelihood
6 that has the advantage of being linear in the model parameters. The image label is
then decided according to a criterion that is slightly different from equation 4:

ĉI = arg min
c

(
αc

KI∑
k=1

τ c(dIk) +KIβ
c

)
. (8)

We note that this modified decision criterion can be interpreted in two different ways:
it can either be interpreted as the consequence of a density estimator to which a mul-
tiplicative factor was added, or as an unmodified NBNN in which an affine correction
has been added to the squared Euclidean distance. In the former, the resulting formu-
lation can be considered different from the initial NBNN. In the latter, equation 8 can
be obtained from equation 4 simply by replacing τ c(d) by αcτ c(d) + βc (since αc is
positive, the nearest neighbor distance itself does not change). This formulation differs
from [1] only in the evaluation of the distance function, leaving us with two parameters
per class to be evaluated.

At this point, it is important to recall that the introduction of parameters αc and
βc does not violate the naive Bayes assumption, nor the assumption of equiprobability
of classes. In fact, the density estimation correction can be seen precisely as an en-
forcement of these assumptions. If a class is more densely sampled than others (i.e: its
feature space contains more training samples), then the NBNN estimator will have a
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bias towards that class, even though it made the assumption that all classes are equally
probable. The purpose of setting appropriate values for αc and βc is to correct this bias.

It might be noted that deciding on a suitable value for αc and βc reduces to defining
an appropriate bandwidth σc. Indeed, the dimensionality D of the feature space and
the number |χc| of training feature points are known parameters. However, in practice,
choosing a good value for the bandwidth parameter is time-consuming and inefficient.
To cope with this issue, we designed an optimization scheme to find the optimal values
of parameters αc, βc with respect to cross-validation.

2.3 Multi-channel image classification

In the most general case, an image is described by different features coming from dif-
ferent sources or sampling methods. For example, we can sample SIFT features and
local color histograms from an image. We observe that the classification criterion of
equation 1 copes well with the introduction of multiple feature sources. The only dif-
ference should be the parameters for density estimation, since feature types correspond,
in general, to different feature spaces.

In order to handle different feature types, we need to introduce a few definitions
and adapt our notation. In particular, we define the concept of channel: a channel χ
is a function that associates a set of finite-dimensional characteristics to an image I:
∀I, χ(I) ⊂ Rdχ . Channels can be defined arbitrarily: a channel can be associated to a
particular detector/descriptor pair, but can also represent global image characteristics.
For instance, an image channel can consist in a single element, such as the global color
histogram.

Let us assume we have defined a certain number of channels (χn)1≤n≤N , that are
expected to be particularly relevant to the problem at hand. Adapting the framework of
our modified NBNN to multiple channels is just a matter of changing notation. Similarly
to the single-channel case, we aim here at estimating the class label of an image I:

ĉI = arg max
c
P (I|c), with P (I|c) =

∏
n

∏
d∈χn(I)

P (d|c). (9)

Since different channels have different features spaces, the density correction parame-
ters should depend on the channel index: αc, βc will thus be noted αcn, βcn. The notation
from the previous section are adapted in a similar way: we call χcn =

⋃
J|cJ=c χn(J)

the set of all features from class c and channel n and define the distance function of a
feature d to χcn by: ∀d, τ cn(d) = τ(d, χcn). This leads to the classification criterion:

ĉI = arg min
c

∑
n

(
αcn

∑
d∈χn(I)

τ cn(d) + βcn|χn(I)|
)
. (10)

Naturally, when adding feature channels to our decision criterion, we wish to balance
the importance of each channel relatively to its relevance to the problem at hand. Equa-
tion 10 shows us that the function of relevance weighting can be assigned to the distance
correction parameters. The problems of adequate channel balancing and nearest neigh-
bor distance correction should thus be addressed in one single step. In the following
section, we present a method to find the optimal values of these parameters.
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2.4 Parameter estimation

We now turn to the problem of estimating values of αcn and βcn that are optimal for
classification. To simplify mathematical derivations, let us denote by Xc(I) the vector
in R2N defined by

Xc
n(I) =

∑
d∈χn(I)

τ cn(d), Xc
N+n(I) = |χn(I)|, ∀n = 1, . . . , N. (11)

For every c, the vector Xc(I) can be considered as a global descriptor of image I . We
also denote by ωc the (2N)-vector (αc1, . . . , α

c
N , β

c
1, . . . , β

c
N ) and byW the matrix that

results from concatenation of vectors wc for different values of c. Using these notation,
the classifier we propose can be rewritten as:

ĉI = arg minc (ωc)>Xc(I), (12)

where (ωc)> stands for the transpose of ωc. This is close in spirit to the winner-takes-all
classifier widely used for the multiclass classification.

Given a labeled sample (Ii, ci)i=1,...,K independent of the sample used for comput-
ing the sets χcn, we can define a constrained linear energy optimization problem that
minimizes the hinge loss of a multi-channel NBNN classifier:

E(W ) =
K∑
i=1

max
c:c 6=ci

(
1 + (ωci)>Xci(Ii)− (ωc)>Xc(Ii)

)
+
, (13)

where (x)+ stands for the positive part of a real x. The minimization of E(W ) can be
recast as a linear program since it is equivalent to minimizing

∑
i ξi subject to con-

straints:

ξi ≥ 1 + (ωci)>Xci(Ii)− (ωc)>Xc(Ii), ∀i = 1, . . . ,K, ∀c 6= ci, (14)
ξi ≥ 0 ∀i = 1, . . . ,K, (15)
(ωc)>en ≥ 0, ∀n = 1, . . . , N, (16)

where en stands for the vector of R2N having all coordinates equal to zero, except for
the nth coordinate, which is equal to 1. This linear program can be solved quickly for
a relatively large number of channels and images 3. In practice, the number of channels
should be kept small relatively to the number of training samples to avoid overfitting.
The computational complexity of solving the aforementioned linear program is negli-
gible w.r.t. the complexity of computing the global descriptors Xc based on the nearest
neighbor search.

Our contribution at this point is two-fold. We have proposed a natural parametric
version of NBNN that is designed to improve the predictive performance of NBNN. We
have also integrated the possibility to optimally combine multiple feature channels in
the classifier. Due to the fact that we estimate the distance correcting weights through
the optimization of the hinge loss, the parameters αcn, βcn up-weight channels that are
most relevant to classification.

3 Our implementation makes use of the GNU linear programming kit http://www.gnu.
org/software/glpk/

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
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3 Multi-channel classification by detection

Optimal NBNN was designed in the goal of classifying images with little background
clutter, and it is bound to fail on images containing too many background features.
Classification by detection (cf. [7] and the references therein) is tailored to this kind
of situations. It consists in selecting the image region that is the most likely to contain
the object instance. In this section, we adapt our optimal NBNN to the problems of
classification by detection. We will see that the final formulation is mostly identical to
the formulation we adopted for general image classification.

We shall adopt the experimental framework given by the annotated Graz-02 dataset
[14]: object instances from class c are surrounded by background clutter, denoted c.
Keeping the initial naive Bayes as well as the class equiprobability assumptions, our
goal is to maximize the probability of the joint object label c and position π inside
the image conditioned on the image content. We further assume object positions are
equiprobable (P (π|c) = P (π) = cte). The image class estimate now takes the fol-
lowing form: (ĉI , π̂I) = arg maxc,π P (I|c, π). Following the same line of thought
as in NBNN, we can expand the likelihood term under the naive Bayes assumption:
P (I|c, π) =

∏
n

∏
d∈χn(I) P (d|c, π) for all c and π.

At this point, we make the additional assumption that a feature probability knowing
the object class and position only depends on the point belonging or not to the object:

∀n, d, c, − log (P (d|c, π)) =
{
τ cn(d) if d ∈ π
τ cn(d) if d /∈ π. (17)

In the above equation, we have written the feature-to-set distance functions τ cn and τ cn
without apparent density correction in order to alleviate the notation. We leave to the
reader the task of replacing τ cn by αcnτ

c
n + βcn in the equations of this section.

The image log-likelihood function is now decomposed over all features inside and
outside the object:E(I, c, π) , − log

(
P (I|c, π)

)
=
∑
n

(∑
d∈π τ

c
n(d)+

∑
d/∈π τ

c
n(d)

)
.

The term on the RHS can be rewritten:

E(I, c, π) =
∑
n

{∑
d∈π

(τ cn(d)− τ cn(d)) +
∑
d

τ cn(d)
}
. (18)

Observing that the second sum on the RHS does not depend on π, we get E(I, c, π) =
E1(I, c, π)+E2(I, c), whereE1(I, c, π) =

∑
n

∑
d∈π

(
τ cn(d)− τ cn(d)

)
andE2(I, c) =∑

n

∑
d τ

c
n(d). Let us define the optimal object position π̂c relatively to class c as the

position that minimizes the first energy term: π̂c = arg minπ E1(I, c, π) for all c. Then,
we can obtain the most likely image class and object position by:

ĉI = arg min
c

(E1(I, c, π̂c) + E2(I, c)) , π̂I = π̂ĉI . (19)

For any class c, finding the rectangular window π̂c that is the most likely candidate
can be done naively by exhaustive search, but it proves prohibitive. Instead, we make
use of fast branch and bound subwindow search [2]. The method used to search for the
image window that maximizes the prediction of a linear SVM can be generalized to any
classifier that is linear in the image features, such as our optimal multi-channel NBNN.
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In short, the most likely class label and object position for a test image I are found
by the following algorithm:
1: declare variables ĉ, π̂
2: Ê = +∞
3: for each class label c do
4: find π̂c by efficient branch and bound subwindow search
5: π̂c = arg minπ E1(I, c, π)
6: if E1(I, c, π̂

c) + E2(I, c) < Ê then
7: Ê = E1(I, c, π̂

c) + E2(I, c)
8: ĉ = c
9: π̂ = π̂c

10: end if
11: end for
12: return ĉ, π̂

4 Experiments

Our optimal NBNN classifier was tested on three datasets: Caltech-101 [15], SceneClass
13 [16] and Graz-02 [14]. In each case, the training set was divided into two equal parts
for parameter selection. Classification results are expressed in percent and reflect the
rate of good classification, per class or averaged over all classes.

A major practical limitation of NBNN and of our approach is the computational
time necessary to nearest neighbor search, since the sets of potential nearest neighbors
to explore can contain of the order of 105 to 106 points. We thus need to implement an
appropriate search method. However, the dimensionality of the descriptor space can also
be quite large and traditional exact search methods, such as kd-trees or vantage point
trees [17] are inefficient. We chose Locality Sensitive Hashing (LSH) and addressed
the thorny issue of parameter tuning by multi-probe LSH4 [18] with a recall rate of
0.8. We observed that resulting classification performance are not overly sensitive to
small variations in the required recall rate. However, computations speed is: compared
to exhaustive naive search, the observed speed increase was more than ten-fold. Further
improvement in the execution times can be achieved using recent approximate NN-
search methods [19,20].

Let us describe the databases used in our experiments.

Caltech-101 (5 classes) This dataset includes the five most populated classes of the
Caltech-101 dataset: faces, airplanes, cars-side, motorbikes and background. These
images present relatively little clutter and variation in object pose. Images were
resized to a maximum of 300 × 300 pixels prior to processing. The training and
testing sets both contain 30 randomly chosen image per class. Each experiment
was repeated 20 times and we report the average results over all experiments.

SceneClass 13 Each image of this dataset belongs to one of 13 indoor and outdoor
scenes. We employed 150 training images per class and assigned the rest to the
testing set.

4 For which an open source implementation exists: http://lshkit.sourceforge.
net/

http://lshkit.sourceforge.net/
http://lshkit.sourceforge.net/
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Graz-02 This manually segmented dataset contains instances of three classes: bike,
people or car. Each image belongs to just one class. The training and testing sets
are both composed of 100 images per class. This database is considered as chal-
lenging [21] since the objects of interest are not necessarily central or dominant.
Furthermore, they are subject to significant pose variation and partial occlusion.

4.1 Single-channel classification

The impact of optimal parameter selection on NBNN is measured by performing im-
age classification with just one feature channel. We chose SIFT features [22] for their
relative popularity. Results are summarized in Tables 1 and 2.

Datasets BoW/SVM BoW/χ2-SVM NBNN [1] Optimal NBNN

SceneClass13 [16] 67.85 ±0.78 76.7 ±0.60 48.52 ±1.53 75.35 ±0.79
Graz02 [14] 68.18 ±4.21 77.91 ±2.43 61.13 ±5.61 78.98 ±2.37
Caltech101 [15] 59.2 ±11.89 89.13 ±2.53 73.07 ±4.02 89.77 ±2.31

Table 1. Performance comparison between the bag of words classified by linear and χ2-kernel
SVM, the NBNN classifier and our optimal NBNN.

In Table 1, the first two columns refer to the classification of bags of words by linear
SVM and by χ2-kernel SVM. In all three experiments we selected the most efficient
codebook size (between 500 and 3000) and feature histograms were normalized by their
L1 norm. Furthermore, only the results for the χ2-kernel SVM with the best possible
value (in a finite grid) of the smoothing parameter are reported. In Table 2, we omitted
the results of BoW/SVM because of their clear inferiority w.r.t. BoW/χ2-SVM.

Class BoW/χ2-SVM NBNN [1] Optimal NBNN

Airplanes 91.99 ± 4.87 34.17 ±11.35 95.00 ± 3.25
Car-side 96.16 ± 3.84 97.67 ± 2.38 94.00 ± 4.29
Faces 82.67 ± 9.10 85.83 ± 9.02 89.00 ± 7.16
Motorbikes 87.80 ± 6.28 71.33 ±19.13 91.00 ± 5.69
Background-google 87.50 ± 6.22 76.33 ±22.08 79.83 ± 10.67

Table 2. Performance comparison between the bag of words classified by χ2-kernel SVM, the
NBNN classifier and our optimal NBNN. Per class results for Caltech-101 (5 classes) dataset.

There are two lessons to be learned from these experiments: the first is that cor-
recting the NBNN formulation proves to be an absolute necessity if we want use un-
quantized features to advantage. Indeed the gain produced by parameter selection is
almost systematic and exceeds 15 percentage points (in average) for the SceneClass
and Graz-02 datasets. Secondly, we observe that the accuracy of NBNN is comparable
to the state-of-the-art classification procedures such as BoW/χ2-SVM. It should also be
noted unlike NBNN, BoW/χ2-SVM involves a tuning parameter the choice of which is
a delicate issue.

To our knowledge, the state-of-the-art reported in the literature are 73.4% [23] for
SceneClass13 (with an experimental setting however different from ours, since the au-
thors use half of the dataset for training and the other half for testing), and 82.7%
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[24] for Graz-02 (using 150 positive and 150 negative images for training, for each
non-background class). Given the relatively small training set that we use, our results
compare favorably.

4.2 Radiometry invariance

In this experiment, results highlight the necessity of parametric density estimation to
make best use of visual features. In [8], different radiometry invariants of SIFT are
presented and their relative performances are evaluated. Our own experiments made
with the initial formulation of NBNN concur with the conclusions of [8],

as we find that the most efficient descriptors are: rgSIFT, followed by cSIFT and
transformed color SIFT (cf. Table 3). The order of these descriptors roughly corre-
sponds to the conclusions of [8]. Experiments revealed that the performance exhib-
ited by optimal NBNN reverse this sequence: opponentSIFT becomes one of the best
descriptors, with 91.10% good classification rate, while rgSIFT performs worst, with
85.17%. Thus, a wrong evaluation of the feature space properties undermines the de-
scriptor performance.

Feature BoW/χ2-SVM NBNN [1] Optimal NBNN

SIFT 88.90 ±2.59 73.07 ±4.02 89.77 ±2.31
OpponentSIFT 89.90 ±2.18 72.73 ±6.01 91.10 ±2.45
rgSIFT 86.03 ±2.63 80.17 ±3.73 85.17 ±4.86
cSIFT 86.13 ±2.76 75.43 ±3.86 86.87 ±3.23
Transf. color SIFT 89.40 ±2.48 73.03 ±5.52 90.01 ±3.03

Table 3. Caltech101 (5classes): Influence of various radiometry invariant features. Best and worst
SIFT invariants are highlighted in blue and red, respectively.

Fig. 2. Feature channels as image subregions: 1× 1, 1× 2, 1× 3, 1× 4.

4.3 Multi-channel classification

The notion of channel is sufficiently versatile to be adapted to a variety of different con-
texts. In this experiment, we borrow the idea developed in [4] to subdivide the image
in different spatial regions. We consider that an image channel associated to a certain
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image region is composed of all features that are located inside this region. In prac-
tice, image regions are regular grids of fixed size. We conducted experiments on the
SceneClass13 dataset with 1 (1 × 1), 3 (1 × 1 + 1 × 2), 4 (1 × 1 + 1 × 3) and 5
(1 × 1 + 1 × 4) channels (see Fig. 2 for an illustration). Results are summarized in
table 4. As we can see by comparing the first line with the subsequent lines, adding
channels increases the rate of correct classification. Best performances are recorded in
the experiment with the largest number of channels.

Channels #channels NBNN Optimal NBNN

1× 1 1 48.52 75.35
1× 1 + 1× 2 3 53.59 76.10
1× 1 + 1× 3 4 55.24 76.54
1× 1 + 1× 4 5 55.37 78.26

Table 4. Multi-channel classification, SceneClass13 dataset.

4.4 Classification by detection

The Graz-02 dataset is a good example of the necessity of classification by detection
for diminishing the importance of background clutter. In this set of experiments, the
dataset is divided into just two classes: the positive class contains images of bicycles,
while the negative class contains all other images. In this context, the estimated label of
a test image I is given by:

ĉI = sign
(
E2(I, back)− E(I, bike, π̂bike)

)
, (20)

where we have retained notation from Section 3. The distance correction parameters that
have to be determined for this problem are the αcn, βcn where c is in

{
bike, bike, back

}
.

For the sake of parameter selection, the sets of images from classes bike and bike are
obtained by decomposing each positive image in two complementary parts: the points
located on a bicycle instance are in bike while others are in bike. Density estimation
parameters were learned using the procedure described in Section 2.4.

We combined all five SIFT radiometry invariants already employed in Section 4.2.
With classification by detection, we raised the classification rate of optimal NBNN
from 78.70% to 83.60%, while classification by detection with NBNN achieved just
68.35%. Detection examples are shown in Fig. 1 and 3. This is close to the results
reported in [25,21] and [26], where the rate of classification is 77.8%, 80.5% and 84.4%,
respectively.

It can be observed that the non-parametric NBNN usually converges towards an
optimal object window that is too small relatively to the object instance. This is due to
the fact that the background class is more densely sampled. Consequently, the nearest
neighbor distance gives an estimate of the probability density that is too large. It was
precisely to address this issue that optimal NBNN was designed.
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Class NBNN Optimal NBNN [21] [25] [26]

bike 68.35 ± 10.66 78.70 ± 4.67 80.5 77.8 84.4
people 45.10 ± 12.30 76.20 ± 5.85 81.7 81.2 −
car 42.40 ± 15.41 82.05 ± 4.88 70.1 70.5 79.9

Table 5. Per-class classification rate for the Graz-02 database.

5 Conclusion

In this paper, we proposed a parametric version of the NBNN classifier as well as a
method for learning the parameters from a labeled set of images. The flexibility of this
new classifier is exploited for defining its multi-channel counterpart and for adapting
it to the task of object localization and classification by detection. Both in theory and
in practice, it is shown that the new approach is much more powerful than the original
NBNN in the case where the number of features per class is strongly class-dependent.
Furthermore, the experiments carried out on some standard databases demonstrate that
parametric NBNN can compete with other state-of-the-art approaches to object classi-
fication. The C++ implementation of the optimal NBNN is made publicly available at
http://code.google.com/p/optimal-nbnn/.

Testing alternative strategies for parameter optimization step [27] and combining
our approach with approximate nearest-neighbor search [19] are interesting avenues for
future research.

Fig. 3. Subwindow detection for NBNN (red) and optimal NBNN (green). For this experiment,
all five SIFT radiometry invariants were combined. (see Section 4.4)

References

1. Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classifi-
cation. In: CVPR. (2008) 1, 2, 3, 4, 5, 10, 11



14 Behmo, R., Marcombes, P., Dalalyan, A. and Prinet, V.

2. Lampert, C., Blaschko, M., Hofmann, T.: Beyond sliding windows: Object localization by
efficient subwindow search. In: CVPR. (2008) 1, 2, 3, 8

3. Marszałek, M., Schmid, C., Harzallah, H., van de Weijer, J.: Learning object representations
for visual object class recognition (2007) Visual Recognition Challange workshop. 1

4. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories. In: CVPR. (2006) 1, 3, 11

5. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: Discriminative nearest neighbor
classification for visual category recognition. In: CVPR. (2006) 1

6. Jégou, H., Douze, M., Schmid, C.: Improving bag-of-features for large scale image search.
International Journal of Computer Vision 87 (2010) 316–336 1

7. Harzallah, H., Jurie, F., Schmid, C.: Combining efficient object localization and image clas-
sification. In: International Conference on Computer Vision. (2009) 2, 8

8. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object
and scene recognition. T-PAMI (2010) 3, 11

9. Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: ICCV.
(2007) 3

10. Bosch, A., Zisserman, A., Munoz, X.: Representing shape with a spatial pyramid kernel. In:
International Conference on Image and Video Retrieval (ICIVR). (2007) 3

11. Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns.
In: ICCV. (2007) 3

12. Yuan, J., Liu, Z., Wu, Y.: Discriminative subvolume search for efficient action detection. In:
CVPR. (2009) 3

13. Stone, C.: Optimal uniform rate of convergence for nonparametric estimators of a density
function or its derivatives. Recent advances in statistics (1983) 5

14. Marszałek, M., Schmid, C.: Accurate object localization with shape masks. In: CVPR.
(2007) 8, 9, 10

15. Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. T-PAMI 28 (2006)
594–611 9, 10

16. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories.
CVPR (2005) 9, 10

17. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric
spaces. In: SODA: ACM-SIAM Symposium on Discrete Algorithms. (1993) 9

18. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for performance
tuning. In: CIKM, New York, NY, USA, ACM (2008) 669–678 9

19. Muja, M., Lowe, D.: Fast approximate nearest neighbors with automatic algorithm configu-
ration. In: VISAPP. (2009) 9, 13

20. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE
Transactions on Pattern Analysis & Machine Intelligence (2010) to appear. 9

21. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse features with
limited receptive fields. Int. J. Comput. Vision 80 (2008) 45–57 10, 12, 13

22. Lowe, D.: Distinctive image features from scale-invariant keypoints. In: IJCV. (2003) 10
23. Bosch, A., Zisserman, A., Munoz, X.: Scene classification via pLSA. In: ECCV. (2006) 10
24. Ling, H., Soatto, S.: Proximity distribution kernels for geometric context in category recog-

nition. In: ICCV. (2007) 11
25. Opelt, A., Pinz, A., Fussenegger, M., Auer, P.: Generic object recognition with boosting.

PAMI 28 (2004) 2006 12, 13
26. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized

clustering forests. In: Neural Information Processing Systems (NIPS). (2006) 12, 13
27. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and application

to the classification of microarray data and satellite radiance data. JASA 99 (2004) 67–81 13


